If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+21x+20=0
a = -4.9; b = 21; c = +20;
Δ = b2-4ac
Δ = 212-4·(-4.9)·20
Δ = 833
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{833}=\sqrt{49*17}=\sqrt{49}*\sqrt{17}=7\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-7\sqrt{17}}{2*-4.9}=\frac{-21-7\sqrt{17}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+7\sqrt{17}}{2*-4.9}=\frac{-21+7\sqrt{17}}{-9.8} $
| 100+22x=298. | | 14=4x2-50 | | 10-9m=-m-10m-4 | | 3x+15=7x-10 | | x*x*5=400 | | 4x+9(-8x-2)=2 | | 86x+3x+8=35 | | V(d)=10^{{1.5d}} | | 3y+8y=25 | | -2+4y=8+10y-5y | | x2+6x-18=0 | | 51+3x=30 | | 4x−8=164x-8=164x−8= | | 4t-6=2t+10 | | 3x2+13=121 | | 5x=1+11/9 | | 17s-12s=15 | | -8r=-9r+4 | | x2-50=50 | | -8x-6(-7x-5)=3 | | -8-9j=-5j | | 19-13x=-17-5 | | -10+7q=8q-7 | | 4x-120+6x-3x=127 | | 5(x-2)+7+2x=7+7x | | x2+15x+42=0 | | 14-5d-9d=0 | | Y-2x=1.5 | | 10+7g=9g | | 3/4x+4=28 | | x2-58=111 | | X-2y=1.5 |